منابع مشابه
Note on an Iyengar type inequality
Using Hayashi's inequality, an Iyengar type inequality for functions with bounded second derivative is obtained. This result improves a similar result from [N. Elezovi´c, J. Pečari´c, Steffensen's inequality and estimates of error in trapezoidal rule, Appl. In 1938 Iyengar proved the following inequality in [1]: Theorem 1. Let function f be differentiable on [a, b] and | f (x)| ≤ M. Then 1 b − ...
متن کاملA Note on Perelman’s Lyh Type Inequality
We give a proof to the Li-Yau-Hamilton type inequality claimed by Perelman on the fundamental solution to the conjugate heat equation. The rest of the paper is devoted to improving the known differential inequalities of Li-Yau-Hamilton type via monotonicity formulae.
متن کاملNote on weighted Carleman-type inequality
In (1.2), letting p → ∞, then the following Carleman inequality [6, page 249] is deduced: ∞ ∑ n=1 ( a1a2 ···an )1/n < e ∞ ∑ n=1 an, (1.3) where an ≥ 0 for n∈N and 0 < ∑∞ n=1 an <∞. The constant e is the best possible. Carleman’s inequality (1.3) was generalized in [6, page 256] by Hardy as follows. Let an ≥ 0, λn > 0, Λn = ∑n m=1 λm for n∈N, and 0 < ∑∞ n=1 λnan <∞, then ∞ ∑ n=1 λn ( a1 1 a λ2 2...
متن کاملA note on Jensen type inequality for Choquet integrals
The purpose of this paper is to prove a Jensen type inequality for Choquet integrals with respect to a non-additive measure which was introduced by Choquet [1] and Sugeno [20]; Φ((C) ∫ fdμ) ≤ (C) ∫ Φ(f)dμ, where f is Choquet integrable, Φ : [0,∞) −→ [0,∞) is convex, Φ(α) ≤ α for all α ∈ [0,∞) and μf (α) ≤ μΦ(f)(α) for all α ∈ [0,∞). Furthermore, we give some examples assuring both satisfaction ...
متن کاملA Note on Matrix Versions of Kantorovich–type Inequality
Some new matrix versions of Kantorovich-Type inequalities for Hermitian matrix are proposed in this paper. We consider what happens to these inequalities when the positive definite matrix is allowed to be positive semidefinite singular or indefinite.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2013
ISSN: 1331-4343
DOI: 10.7153/mia-16-19